Problem Set on Differentiation

V. M. Sholapurkar

1. Let $f(x)=x$ if x is rational and $f(x)=\sin x$ if x is irrational. Find the points where f is differentiable.
2. If f is differentiable at every point of $[a, b]$, show that for every α such that $f^{\prime}(a)<\alpha<f^{\prime}(b)$, there exists $c \in(a, b)$ such that $f^{\prime}(c)=\alpha$.
3. Prove that there is no value of k such that the equation $x^{2014}-2014 x+k=0$ has two distinct roots in $[0,1]$.
4. Let $f(x)=0$ if $x \in[-1,0]$ and $f(x)=1$ if $x \in(0,1]$. Does there exist a function g such that $g^{\prime}(x)=f(x)$ for all $x \in[-1,1]$?
5. Prove that $f(x)=\sin x$ is not a polynomial.
6. Is the map $\cos : \mathbb{R} \rightarrow \mathbb{R}$ a contraction?. What about $\cos o \cos$?
7. Suppose $1 \leq f^{\prime}(x) \leq 2$ for all $x \in \mathbb{R}$ and $f(0)=0$. Prove that $x \leq f(x) \leq 2 x$ for all $x \in \mathbb{R}$.
8. If $f^{\prime}(x)>0$ for all x in an open interval I, then prove that f is injective on I. If f^{-1} a differentiable function?
9. Show that the polynomial $x^{2 n}-2 x^{2 n-1}+3 x^{2 n-2}+\cdots-2 n x+2 n+1$ has no real root.
10. Show that the poynomial $\frac{x^{n}}{n!}+\frac{x^{n-1}}{(n-1)!}+\cdots+x+1$ has no real root if n is even and exactly one real root if n is odd
11. Suppose that the polynomials P and Q have same roots, possibly with different multiplicities; and the same is true for $P+1$ and $Q+1$. Prove that $P=Q$.
12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{\sin x}{x}$ if $x \neq 0$ and $f(0)=1$. Show that f has a fixed point.
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that f^{\prime} is a decreasing function. If a, b, c are real numbers with $a<c<b$, prove that ($b-$ c) $f(a)+(c-a) f(b) \leq(b-a) f(c)$.
14. Prove that the equation $e^{x}-\ln (x)-2^{2014}=0$ has exactly two positive real roots.
15. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a non-constant function satisfying $f(x+y)=$ $f(x) f(y)$ for all $x, y \in \mathbb{R}$. Show that
(a) $f(x) \neq 0$ for all $x \in \mathbb{R}$;
(b) $f(x)>0$ for all $x \in \mathbb{R}$;
(c) If f is differentiable at 0 , then f is differentiable on \mathbb{R} and there exists some real number β such that $f(x)=\beta^{x}$ for all $x \in \mathbb{R}$.
16. Let f be a continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $f(0)=0, f(1)=1$ and $f(2)=2$, then show that there exists x_{0} such that $f^{\prime \prime}\left(x_{0}\right)=0$.
17. For non-negative real numbers $a_{1}, a_{2}, \ldots a_{n}$, show that

$$
\frac{1}{n} \sum_{k=1}^{n} a_{k} e^{-a_{k}} \leq \frac{1}{e}
$$

18. Let f be differentiable on \mathbb{R} and $\sup \left\{\left|f^{\prime}(x)\right|: x \in \mathbb{R}\right\}<1$. Let $s_{0} \in \mathbb{R}$. If $s_{n}=f\left(s_{n-1}\right.$, prove that $\left\{s_{n}\right\}$ is convergent.
19. Let $f(x)=e^{-\frac{1}{x}}$ if $x>0$, and $f(x)=0$ if $x \leq 0$. Show that f is differentiable at 0 and $f^{(n)}(0)=0$ for all $n \in \mathbb{N}$.
20. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any function. Prove that the set $\{a \in \mathbb{R}: a$ is a local extremum of $f\}$ is countable.
21. Give an example of a real valued function of a real variable such that the set $\{a \in \mathbb{R}: a$ is a local extremum of $f\}$ is empty but the set $\left\{f(a) \in \mathbb{R}: f^{\prime}(a)=0\right\}$ is uncountable.
