Problem Set on Differentiation

V. M. Sholapurkar

- 1. Let f(x) = x if x is rational and $f(x) = \sin x$ if x is irrational. Find the points where f is differentiable.
- 2. If f is differentiable at every point of [a, b], show that for every α such that $f'(a) < \alpha < f'(b)$, there exists $c \in (a, b)$ such that $f'(c) = \alpha$.
- 3. Prove that there is no value of k such that the equation $x^{2014} 2014x + k = 0$ has two distinct roots in [0, 1].
- 4. Let f(x) = 0 if $x \in [-1, 0]$ and f(x) = 1 if $x \in (0, 1]$. Does there exist a function g such that g'(x) = f(x) for all $x \in [-1, 1]$?
- 5. Prove that $f(x) = \sin x$ is not a polynomial.
- 6. Is the map $\cos : \mathbb{R} \to \mathbb{R}$ a contraction ?. What about $\cos \circ \cos$?
- 7. Suppose $1 \le f'(x) \le 2$ for all $x \in \mathbb{R}$ and f(0) = 0. Prove that $x \le f(x) \le 2x$ for all $x \in \mathbb{R}$.
- 8. If f'(x) > 0 for all x in an open interval I, then prove that f is injective on I. If f^{-1} a differentiable function ?
- 9. Show that the polynomial $x^{2n} 2x^{2n-1} + 3x^{2n-2} + \cdots 2nx + 2n + 1$ has no real root.
- 10. Show that the poynomial $\frac{x^n}{n!} + \frac{x^{n-1}}{(n-1)!} + \dots + x + 1$ has no real root if n is even and exactly one real root if n is odd
- 11. Suppose that the polynomials P and Q have same roots, possibly with different multiplicities; and the same is true for P+1 and Q+1. Prove that P = Q.
- 12. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{\sin x}{x}$ if $x \neq 0$ and f(0) = 1. Show that f has a fixed point.
- 13. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f' is a decreasing function. If a, b, c are real numbers with a < c < b, prove that $(b c)f(a) + (c a)f(b) \le (b a)f(c)$.

- 14. Prove that the equation $e^x ln(x) 2^{2014} = 0$ has exactly two positive real roots.
- 15. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a non-constant function satisfying f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$. Show that
 - (a) $f(x) \neq 0$ for all $x \in \mathbb{R}$;
 - (b) f(x) > 0 for all $x \in \mathbb{R}$;
 - (c) If f is differentiable at 0, then f is differentiable on \mathbb{R} and there exists some real number β such that $f(x) = \beta^x$ for all $x \in \mathbb{R}$.
- 16. Let f be a continuous function on [0,2] and twice differentiable on (0,2). If f(0) = 0, f(1) = 1 and f(2) = 2, then show that there exists x_0 such that $f''(x_0) = 0$.
- 17. For non-negative real numbers $a_1, a_2, \ldots a_n$, show that

$$\frac{1}{n}\sum_{k=1}^{n}a_{k}e^{-a_{k}}\leq\frac{1}{e}.$$

- 18. Let f be differentiable on \mathbb{R} and $\sup\{|f'(x)| : x \in \mathbb{R}\} < 1$. Let $s_0 \in \mathbb{R}$. If $s_n = f(s_{n-1})$, prove that $\{s_n\}$ is convergent.
- 19. Let $f(x) = e^{-\frac{1}{x}}$ if x > 0, and f(x) = 0 if $x \le 0$. Show that f is differentiable at 0 and $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.
- 20. Let $f : \mathbb{R} \to \mathbb{R}$ be any function. Prove that the set $\{a \in \mathbb{R} : a \text{ is a local extremum of } f\}$ is countable.
- 21. Give an example of a real valued function of a real variable such that the set $\{a \in \mathbb{R} : a \text{ is a local extremum of } f\}$ is empty but the set $\{f(a) \in \mathbb{R} : f'(a) = 0\}$ is uncountable.